
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Yichao Zhou1,2,∗ Haozhi Qi1 Yuexiang Zhai1 Qi Sun2 Zhili Chen2 Li-Yi Wei2 Yi Ma1

1UC Berkeley 2Adobe Research

Abstract

In this paper, we propose a method to obtain a compact
and accurate 3D wireframe representation from a single im-
age by effectively exploiting global structural regularities.
Our method trains a convolutional neural network to simul-
taneously detect salient junctions and straight lines, as well
as predict their 3D depth and vanishing points. Compared
with the state-of-the-art learning-based wireframe detection
methods, our network is much simpler and more unified,
leading to better 2D wireframe detection. With global struc-
tural priors such as Manhattan assumption, our method
further reconstructs a full 3D wireframe model, a compact
vector representation suitable for a variety of high-level vi-
sion tasks such as AR and CAD. We conduct extensive eval-
uations on a large synthetic dataset of urban scenes as well
as real images. Our code and datasets will be released.

1. Introduction
Recovering 3D geometry of a scene from RGB images is

one of the most fundamental and yet challenging problems
in computer vision. Most existing off-the-shelf commer-
cial solutions to obtain 3D geometry still requires active
depth sensors such as structured lights (e.g., Apple ARKit
and Microsoft Mixed Realty Toolkit1) or LIDARs (popular
in autonomous driving). Although these systems can meet
the needs of specific purposes, they are limited by the cost,
range, and working conditions (indoor or outdoor) of the
sensors. The representations of final outputs are typically
dense point clouds, which are not only memory and compu-
tation intense, but also may contain noises and errors due to
transparency, occlusions, reflections, etc.

On the other hand, traditional image-based 3D recon-
structionmethods, such as Structure fromMotion (SfM) and
visual SLAM, often rely on local features. Although the ef-
ficiency and reliability have been improving (e.g., Microsoft
Hololens, Magic Leap), they often need multiple cameras
with depth sensors [14] for better accuracy. The final scene

∗This work was done when Y. Zhou was an intern at Adobe Research.
1https://github.com/Microsoft/MixedRealityToolkit-Unity

(a) Input image (b) 3D wireframe (c) Novel view

Figure 1: Results of our method tested on a single synthetic
image (top row) and a real image (bottom row). Column
(a) shows the input images overlaid with the groundtruth
wireframes, in which the red and blue dots represent the
C- and T-type junctions, respectively. Column (b) shows
the predicted 3D wireframe from our system, with grayscale
visualizing depth. Column (c) shows alternative views of
(b). Note that our system recovers geometrically salient
wireframes, without being affected by the textural lines,
e.g., the vertical textural patterns on the Big Ben facade.

representation remains quasi-dense point clouds, which are
typically incomplete, noisy, and cumbersome to store and
share. Consequently, complex post-processing techniques
such as plane-fitting [12] and mesh refinement [15, 20] are
required. Such traditional representations can hardly meet
the increasing demand for high-level 3D modeling, content
editing, and model sharing from hand-held cameras, mobile
phones, and even drones.

Unlike conventional 3D geometry capturing systems, the
human visual system does not perceive the world as uni-
formly distributed points. Instead, humans are remark-
ably effective, efficient, and robust in utilizing geometrically
salient global structures such as lines, contours, planes, and
smooth surfaces to perceive 3D scenes [2]. However, it re-
mains challenging for vision algorithms to detect and utilize

1

ar
X

iv
:1

90
5.

07
48

2v
1

 [
cs

.C
V

]
 1

7
M

ay
 2

01
9

such global structures from local image features, until recent
advances in deep learning which makes learning high-level
features possible from labeled data. The examples include
detecting planes [30, 19], surfaces [10], 2Dwireframes [13],
room layouts [35], key points for mesh fitting [31, 29], and
sparse scene representations from multiple images [6].

In this work, we infer global 3D scene layouts from
learned line and junction features, as opposed to local corner-
like features such as SIFT [8], ORB [22], or line segments
[11, 5, 24] used in conventional SfM or visual SLAM sys-
tems. Our algorithm learns to detect a special type of wire-
frames that consist of junctions and lines representing the
corners and edges of buildings. We call our representa-
tion the geometric wireframe and demonstrate that together
with certain global priors (say globally or locally Manhattan
[3, 8, 24]), the wireframe representation allows effective and
accurate recovery of the scene’s 3D geometry, even from a
single input image. Our method trains a neural network to
estimate global lines and two types of junctions with depths,
and constructs full 3Dwireframes using the estimated depths
and geometric constraints.

Previously, there have been efforts trying to understand
the indoor scenes with the help of the 3D synthetic datasets
such as the SUNCG [25, 32]. Our work aims at natural urban
environments with a variety of geometries and textures. To
this end, we build two new datasets containing both synthetic
and natural urban scenes. Figure 1 shows the sampled results
of the reconstruction and Figure 2 shows the full pipeline of
our system.

Contributions of this paper. Comparing to existing wire-
frame detection algorithms such as [13], our method

• jointly detects junctions, lines, depth, and vanishing
points with a single neural network, exploiting the tight
relationship among those geometric structures;

• learns to differentiate two types of junctions: the physi-
cal intersections of lines and planes “C-junctions”, and
the occluding “T-junctions”;

• recovers a full 3Dwireframe of the scene from the lines
and junctions detected in a single RGB image.

2. Methods

As depicted in Figure 2, our system starts with a neural
network that takes a single image as input and jointly predicts
multiple 2D heatmaps, from which we vectorize lines and
junctions as well as estimate their initial depth values and
vanishing points. We call this intermediate result a 2.5D
wireframe. Using both the depth values and vanishing points
estimated from the same network as the prior, we then lift
the wireframe from the 2.5D image-space into the full 3D
world-space.

2.1. Geometric Representation
In a geometric wireframe W = (V,E) of the scene, V

and E ⊆ V × V are the junctions and corresponding lines.
Specifically, E represents lines from physical intersections
of two planes while V represents (physical or projective)
intersections of lines among E. Unlike [11, 13], our E
excludes planar textural lines, such as the vertical textures
of Big Ben in Figure 1. The so-defined W aims to capture
global scene geometry instead of local textural details.2 To
specify a wireframe that extends to 3D, extra annotations on
W are necessary. For each junction w ∈ V, our key idea is to
assign it a junction type Jw ∈ {C,T}, representingwhetherw
is aC-junction (Jw = C) or a T-junction (Jw = T). Corner C-
junctions are actual intersections of physical planes or edges,
while T-junctions are generated by occlusion. Examples
of T-junctions (in blue) and C-junctions (in red) can be
found in Figure 1. We denote them as two disjoint sets
V = VC ∪ VT , in which VC = {w ∈ V | Jw = C} and
VT = {w ∈ V | Jw = T}. Junction types are important
for inferring 3D wireframe geometry, as different 3D priors
will be applied to each type.3 For each C-junction u, define
zu as the depth of vertex u, i.e., the z coordinate of u in
the camera space. For each T-junction v, there are two
non-intersecting 3D lines involved. We define zv as the
depth on the occluded line in the background because the
foreground line depth can always be recovered from other
junctions. With depth information, 3D wireframes that are
made of C-junctions, T-junctions and lines give a compact
representation of the scene geometry. Reconstructing such
3D wireframes from single images is our goal.

2.2. From Single Image to 2.5D Representation
Our first step is to train a neural network that learns the

desired junctions, lines, depth, and vanishing points fromour
labeled datasets. We first briefly describe the desired outputs
from the network and the architecture of the network. The
associated loss functions for training the network will be
specified in detail in the next sections.

Given the image I of a scene, the pixel-wise outputs of our
neural network consist of five outputs − junction probability
J, junction offset O, edge probability E , junction depth D,
and vanishing points V :

Y � (J,O, E,D,V), Ŷ � (Ĵ, Ô, Ê, D̂, V̂), (1)

where symbols with and without hats represent the ground
truth and the prediction from the neural network. The mean-
ing of each symbol is detailed in Section 2.2.2.

2In urban scenes, lines from regular textures (such as windows on a
facade) do encode accurate scene geometry [33]. The neural network can
still use them for inferring the wireframe but only not to keep them in
the final output, which is designed to give a compact representation of the
geometry only.

3There is another type of junctionswhich are caused by lines intersecting
with the image boundary. We treat them as C-junctions for simplicity.

Feature Extraction

& Hourglass x 4

CONVs

Depth Maps

Junction Heatmaps

Edge Maps

Vanishing Points

Wireframe

Vectorization

3D LiftingNeural Network

2.5D Inference

CONVs

CONVs

CONVs

Input Image

Figure 2: Overall pipeline of the proposed method.

2.2.1 Network Design

Our network structure is based on the stacked hourglass
network [23]. The input images are cropped and re-scaled
to 512 × 512 before entering the network. The feature-
extracting module, the first part of the network, includes
strided convolution layers and one max pooling layer to
downsample the feature map to 128 × 128. The following
part consists of S hourglass modules. Each module will
gradually downsample then upsample the feature map. The
stacked hourglass network will gradually refine the output
map to match the supervision from the training data. Let the
output of the jth hourglass module given the ith image be
Fj(Ii). During the training stage, the total loss to minimize
is:

Ltotal �
N∑
i=1

S∑
j=1

L(Y (j)i , Ŷi) =
N∑
i=1

S∑
j=1

L(Fj(Ii), Ŷi),

where i represents the index of images in the training dataset;
j represents the index of the hourglass modules; N repre-
sents the number of training images in a batch; S represents
the number of stacks used in the neural network; L(·, ·) rep-
resents the loss of an individual image; Y (j)i represents the
predicted intermediate representation of image Ii from the
jth hourglass module, and Ŷi represents the ground truth
intermediate representation of image Ii .

The loss of an individual image is a superposition of the
loss functions Lk specified in the next section:

L �
∑
k

λkLk, k ∈ {J,O, E,D,V }.

The hyper-parameters λk represents the weight of each sub-
loss. During experiments, we set λ so that λkLk are of
similar scales.

2.2.2 Output Maps and Loss Functions

Junction Map J and Loss LJ . The ground truth junction
map Ĵ is a down-sampled heatmap for the input image,
whose value represents whether there exists a junction in
that pixel. For each junction type t ∈ {C,T}, we estimate its
corresponding junction heatmap

Ĵt (p) =
{

1 ∃w ∈ Vt : p = bw4 c,
0 otherwise.

Following [23], the resolution of the junction heatmap is 4
times less than the resolution of the input image.

Because some pixels may contain two types of junctions,
we treat the junction prediction as two per-pixel binary clas-
sification problems. We use the classic softmax cross en-
tropy loss to predict the junction maps:

LJ (J, Ĵ) � 1
n

∑
t∈{C,T }

∑
p

CrossEntropy
(
Jt (p), Ĵt (p)

)
,

where n is the number of pixels of the heatmap. The resulting
Jt (x, y) ∈ (0, 1) represents the probability whether there
exists a junction with type t at [4x, 4x + 4) × [4y, 4y + 4) in
the input image.

Offset Map O and Loss LO. Comparing to the input im-
age, the lower resolution of J might affect the precision of
junction positions. Inspired by [28], we use an offset map
to store the difference vector from Ĵ to its original position

with sub-pixel accuracy:

Ôt (p) =
{
w
4 − p ∃w ∈ Vt : p = bw4 c
0 otherwise

, t ∈ {C,T}.

We use the `2-loss for the offset map and use the heatmap
as a mask to compute the loss only near the actual junctions.
Mathematically, the loss function is written as

LO(O, Ô) �
∑

t∈{C,T }

∑
p Ĵt (p)

����Ot (p) − Ôt (p)
����2

2∑
p Ĵt (p)

,

whereOt (p) is computed by applying a sigmoid and constant
translation function to the last layer of the offset branch in
the neural network to enforce Ot (p) ∈ (−0.5, 0.5)2. We
normalize LO by the number of junctions of each type.
Edge Map E and Loss LE . To estimate line positions,
we represent them in an edge heatmap. For the ground
truth lines, we draw them on the edge map using an anti-
aliasing technique [34] for better accuracy. Let dist(p, e) be
the shortest distance between a pixel p and the nearest line
segment e. We define the edge map to be

Ê(p) =
{

maxe 1 − dist(p, e) ∃e ∈ E : dist(p, e) < 1,
0 otherwise.

Intuitively, E(p) ∈ [0, 1] represents the probability of a line
close to point p. Because the range of the edgemap is always
between 0 and 1, we can treat it as a probability distribution
and use the sigmoid cross entropy loss on the E and Ê:

LE (E, Ê) �
1
n

∑
p

CrossEntropy
(
E(p), Ê(p)

)
.

Junction Depth Maps D and Loss LD . To estimate the
depth zw for each junction w, we define the junction-wise
depth map as

D̂t (p) =
{

zw ∃w ∈ Vt : p = bw4 c,
0 otherwise.

In many datasets with unknown depth units and cam-
era intrinsic matrix K , zw remains a relative scale instead
of absolute depth. To remove the ambiguity from global
scaling, we use scale-invariant loss (SILog) which has been
introduced in single image depth estimation literature [4]. It
removes the influence of the global scale by summing the
log difference between each pixel pair.

LD(D, D̂) �
∑
t

1
nt

∑
p∈Vt

(
logDt (p) − log D̂t (p)

)2

−
∑
t

1
n2
t

(∑
p∈Vt

logDt (p) − log D̂t (p)
)2
.

Vanishing Point Map V and Loss LV . Lines in man-
made outdoor scenes often cluster around the three mutually
orthogonal directions. Let i ∈ {1, 2, 3} represent these three

directions. In perspective geometry, parallel lines in direc-
tion i will intersect at the same vanishing point (Vi,x,Vi,y) in
the image space, possibly at infinity. To avoid Vi,x or Vi,y

becoming too large, we normalize the vector so that

V i =
1

V2
i,x + V2

i,y + 1
[
Vi,x,Vi,y, 1

]T
, (2)

similar to the Gaussian Sphere representation [1]. Because
the two horizontal vanishing points V 1 and V 2 are order
agnostic from a single RGB image, we use the Chamfer
`2-loss for V 1 and V 2, and the `2-loss for V 3 (the vertical
vanishing point):

LV (V, V̂) � min(‖V 1 − V̂ 1‖, ‖V 2 − V̂ 1‖)
+min(‖V 1 − V̂ 2‖, ‖V 2 − V̂ 2‖) + ‖V 3 − V̂ 3‖22 .

2.3. Heatmap Vectorization

As seen from Figure 2, the outputs of the neural network
are essentially image-space 2.5D heatmaps of the desired
wireframe. Vecterization is needed to obtain a compact
wireframe representation.
Junction Vectorization. Recovering the junctions V from
the junction heatmaps J is straightforward. Let ϑC and ϑT
be the thresholds for JC and JT . The junction candidate sets
can be estimated as

Vt = {p + Ot (p) | Jt (p) ≥ ϑt }, t ∈ {C,T}. (3)

Line Vectorization. Line vectorization has two stages.
In the first stage, we detect and construct the line candi-
dates from all the corner C-junctions. This can be done
by enumerating all the pairs of junctions u, v ∈ VC , con-
necting them, and testing if their line confidence score is
greater than a threshold c(u, v) ≥ ϑE . The confidence
score of a line with two endpoints u and v is given as
c(u, v) = 1

|uv |
∑

p∈P(u,v) E(p) where P(u, v) represents the
set of pixels in the rasterized line ®uv, and | ®uv | represents
the number of pixels in that line.

In the second stage, we construct all the lines between
“T-T” and “T-C” junction pairs. We repeatedly add a T-
junction to the wireframe if it is tested to be close to a
detected line. Unlike corner C-junctions, the degree of a
T-junction is always one. So for each T-junction, we find
the best edge associated with it. This process is repeated
until no more lines could be added. Finally, we run a post-
processing procedure to remove lines that are too close or
cross each other. By handling C-junctions and T-junctions
separately, our line vectorization algorithm is both efficient
and robust for sceneswith hundreds of lines. Amore detailed
description is discussed in the supplementary material.

2.4. Image-Space 2.5D to World-Space 3D

So far, we have obtained vectorized junctions and lines in
2.5D image space with depth in a relative scale. However, in

scenarios such as AR and 3D design, absolute depth values
are necessary for 6DoF manipulation of the 3D wireframe.
In this section, we present the steps to estimate them with
our network predicted vanishing points.

2.4.1 Calibration from Vanishing Points
In datasets such as MegaDepth [17], the camera calibration
matrix K ∈ R3×3 of each image is unknown, although it is
critical for a full 3D wireframe reconstruction. Fortunately,
calibration matrices can be inferred from three mutually or-
thogonal vanishing points if the scenes are mostly Manhat-
tan. According to [21], if we transform the orthogonal van-
ishing points V i to the calibrated coordinates V̄ i � K−1V i ,
then V̄ i should be mutually orthogonal, i.e.,

V iK−T K−1V j = 0, ∀i, j ∈ {1, 2, 3}, i , j .

These equations impose three linearly independent con-
straints on K−T K−1 and would enable solving up to three
unknown parameters in the calibration matrix, such as the
optical center and the focal length.

2.4.2 Depth Refinement with Vanishing Points
Due to the estimation error, the predicted depth map may
not be consistent with the detected vanishing points V i . In
practice, we find the neural network performs better on esti-
mating the vanishing points than predicting the 2.5D depth
map. This is probably because there are more geometric
cues for the vanishing points, while estimating depth re-
quires priors from data. Furthermore, the unit of the depth
mapmight be unknown due to the dataset (e.g., MegaDepth)
and the usage of SILog loss. Therefore, we use the vanishing
points to refine the junction depth and determine its absolute
value. Let z̃w � DJw (w) be the predicted depth for junction
w from our neural network. We design the following convex
objective function:

min
z,α

3∑
i=1

∑
(u,v)∈Ai

(zu ū − zv v̄) × V̄ i

2

+ λR
∑
w∈V
‖zw − αz̃w ‖22 (4)

subject to zw ≥ 1, ∀w ∈ V, (5)
λzu + (1 − λ)zv ≤ zw, (6)
where w ∈ VT , (u, v) ∈ E : w = λu + (1 − λ)v,

where Ai represents the set of lines corresponding to van-
ishing point i; α resolves the scale ambiguity in the depth
dimension; ū � K−1[ux uy 1]T is the vertex position in the
calibrated coordinate. The goal of the first term in Equa-
tion (4) is to encourage the line (zu ū, zv v̄) parallel to van-
ishing point V̄ i by penalizing over the parallelogram area
spanned by those two vectors. The second term regularizes
zw so that it is close to the network’s estimation z̃w up to a
scale. Equation (5) prevents the degenerating solution z = 0.
Equation (6) is a convex relaxation of λ

zu
+ 1−λ

zv
≥ 1

zw
, the

(a) Ground truth (b) Before refinement (c) After refinement

Figure 3: Depth refinement with vanishing points. The
middle figure shows a rendering of the wireframe from z̃w
from a slightly different view, while the right figure shows
thewireframe improved by the optimization in Section 2.4.2.

depth constraint for T-junctions. Figure 3 shows the effec-
tiveness of the refinement.

3. Datasets and Annotation
One of the bottlenecks of supervised learning is inad-

equate dataset for training and testing. Previously, [13]
develops a dataset for 2D wireframe detection. However,
their dataset does not contain the 3D depth or the type of
junctions. To the best of our knowledge, there is no public
image dataset that has both wireframe and 3D information.
To validate our approach, we create a hybrid dataset with a
larger number of synthetic images of city scenes and smaller
number of real images. The former has accurate 3D geome-
try and automatically annotated ground truth 3Dwireframes
from mesh edges, while the latter is manually labelled with
less accurate 3D information.
Synthetic City Dataset. To obtain a large number of im-
ages with accurate geometrical wireframes, we use a pro-
gressively generated 3D mesh repository, SceneCity4. The
dataset is made up of simple polygons with artist-tuned ma-
terials and textures. We extract the C-junctions from the
vertices of the mesh and compute T-junctions using com-
putational geometry algorithms and OpenGL. Our dataset
includes 230 cities, each containing 8 × 8 city blocks. The
cities have different building arrangements and lighting con-
ditions by varying the sky maps. We randomly generate 100
viewpoints for each city based on criteria such as the num-
ber of captured buildings to simulate hand-held and drone
cameras. The synthetic outdoor images are then rendered
through global illumination by Blender modeler, which pro-
vides 23, 000 images in total. We use the images of the first
227 cities for training and the rest 3 cities for validation.
Realistic Landmark Dataset. TheMegaDepth v1 dataset
[18] contains real images of 196 landmarks in the world. It
also contains the depth maps of these images via structure
from motion. We select about 200 images that approxi-
mately meet the assumptions of our method, manually label

4https://www.cgchan.com/

their wireframes, and register themwith the rough 3D depth.
In our experiments, we pretrain our network on the syn-

thetic dataset, and then use 2/3 of the real images to finetune
the model. The remaining 1/3 is for testing.

4. Experiments
Weconduct extensive experiments to evaluate ourmethod

and validate the design of our pipeline with ablation studies.
In addition, we compare our method with the state-of-the-
art 2D wireframe extraction approaches. We then evaluate
the performance of our vanishing point estimation and depth
refinement steps. Finally, we demonstrate the examples of
our 3D wireframe reconstruction.

4.1. Implementation Details
Our backbone is a two-stack hourglass network [23].

Each stack consists of 6 stride-2 residual blocks and 6 nearest
neighbour upsamplers. After the stacked hourglass feature
extractor, we insert different “head” modules for each map.
Each head contains a 3 × 3 convolutional layer to reduce
the number of channels followed by a 1 × 1 convolutional
layer to compute the corresponding map. For vanishing
point regression, we use a different head with two consecu-
tive stride-2 convolution layers followed by a global average
pooling layer and a fully-connected layer to regress the po-
sition of the vanishing points.

During the training, the ADAM [16] optimizer is used.
The learning rate and weight decay are set to 8 × 10−4

and 1 × 10−5. All the experiments are conducted on four
NVIDIA GTX 1080Ti GPUs, with each GPU holding 12
mini-batches. For the synthetic dataset, we train our net-
work for 25 epochs. The loss weights are set as λJ = 2.0,
λO = 0.25 λE = 3.0, and λD = 0.1 so that all the loss terms
are roughly equal. For the real-world dataset, we initialize
the network with the one trained on the synthetic data and
use a 10−4 learning rate to train for 5 epochs. We hori-
zontally flip the input image as data-augmentation. Unless
otherwise stated, the input images are cropped to 512× 512.
The final output is of stride 4, i.e., with size 128 × 128.
During heatmap vectorization, we use the hyper-parameter
ϑC = 0.2, ϑT = 0.3, and ϑE = 0.65.

4.2. Evaluation Metrics
We use the standard AP (average precision) from object

detection [7] to evaluate our junction prediction results. Our
algorithm produces a set of junctions and their associated
scores. The prediction is considered correct if its `2 distance
to the nearest ground truth is within a threshold. By this cri-
terion, we can draw the precision-recall curve and compute
the mean AP (mAP) as the area under this curve averaging
over several different thresholds of junction distance.

In our implementation, mAP is averaged over thresh-
olds 0.5, 1.0, and 2.0. In practical applications, long edges

between junctions are typically preferred over short ones.
Therefore, we weight the mAP metric by the sum of the
length of the lines connected to that junction. We use APC
and APT to represent such weighted mAP metric for C-
junctions and T-junctions, respectively. We use the inter-
section over union (IoU) metric to evaluate the quality of
line heatmaps. For junction depth map, we evaluate it on
the positions of the ground truth junctions with the scale
invariant logarithmic error (SILog) [4, 9].

4.3. Ablation on Joint Training and Loss Functions

We run a series of experiments to investigate how differ-
ent feature designs and multi-task learning strategies affect
the wireframe detection accuracy. Table 1 presents our abla-
tion studies with different combinations of tasks to research
the effects of joint training. We also evaluate the choice of
`1- and `2-losses for offset regression and the ordinary loss
[17] for depth estimation. We conclude that:
1. Regressing offset is significantly important for local-

izing junctions (7.4 points for APC and 3 points for
APT), by comparing rows (a-c). In addition, `2 loss is
better than `1 loss, probably due to its smoothness.

2. Joint training junctions and lines improve in both tasks.
Rows (c-e) show improvements with about 1.5 points in
APC , and 0.9 point in APT and line IoU. This indicates
the tight relation between junctions and lines.

3. For depth estimation, we test the ordinal loss from [17].
To our surprise, it does not improve the performance on
our dataset (rows (f-g)). We hypothesis that this is be-
cause the relative orders of sparsely annotated junctions
are harder to predict than the foreground/background
relationship in [17].

4. According to rows (f) and (h), joint training with junc-
tions and lines slightly improves the performance of
depth estimation by 0.55 SILOG point.

4.4. Comparison with 2D Wireframe Extraction

One recent work related to our system is [13], which
extracts 2D wireframes from single RGB images. However,
it has several fundamental differences from ours: 1) It does
not differentiate between corner C-junctions and occluding
T-junctions. 2) Its outputs are only 2D wireframes while
ours are 3D. 3) It trains two separated networks for detecting
junctions and lines. 4) It detects texture lines while ours only
detects geometric wireframes.

In this experiment, we compare the performance with
[13]. The goal of this experiment is to validate the impor-
tance of joint training. Therefore we follow the exact same
training procedure and vectorization algorithms as in [13]
except for the unified objective function and network struc-
ture. Figure 4 shows the comparison of precision and recall
curves evaluated on the test images, using the same evalu-
ation metrics as in [13]. Note that due to different network

supervisions metrics
J O E D J E D
CE `1 `2 CE SILog Ord APC APT IoUE SILog

(a) X 65.4 57.1 / /
(b) X X 69.3 55.8 / /
(c) X X 72.8 60.1 / /
(d) X / / 73.3 /
(e) X X X 74.3 61.0 74.2 /
(f) X / / / 3.59
(g) X X / / / 4.14
(h) X X X X 74.4 61.2 74.3 3.04

Table 1: Ablation study of multi-task learning on 3D wire-
frame parsing. The columns under “supervisions” indicate
what losses and supervisions are used during training; the
columns under “metrics“ indicate the performance given
such supervision during evaluation. The second row shows
the symbols of the feature maps; the third row shows the loss
function names of the corresponding maps. “CE” stands for
the cross entropy loss, “SILog” loss is proposed by [4], and
“Ord” represents the ordinary loss in [17]. “/” indicates that
the maps are not generated and thus not evaluable.

Figure 4: Comparisonwith [13] on 2Dwireframe detection.
We improve the baseline method by 4 points.

designs, their model has about 30M parameters while ours
only has 19M. With fewer parameters, our system achieves
4-point AP improvement over [13] on the 2D wireframe
detection task.

As a sanity check, we also train our network separately
for lines and junctions, as shown by the green curve in
Figure 4. The result is only slightly better than [13]. This
experiment shows that our performance gain is from jointly
trained objectives instead of neural network engineering.

4.5. Vanishing Points and Depth Refinement
In Section 2.4, vanishing point estimation and depth re-

finement are used in the last stage of the 3D wireframe

avg[EV] med[EV] avg[Ef] med[Ef] failures

Ours 2.69◦ 1.55◦ 4.02% 1.38% 2.3%
[5, 27] 4.65◦ 0.14◦ 12.40% 0.21% 20.0%

Table 2: Performance comparison between our method and
LSD/J-linkage [5, 27] for vanishing point detection. EV
represents the angular error of V i in degree, Ef represents
the relative error of the recovered camera focal lengths, and
“failures” represents the percentage of cases whose EV > 8◦.

representation. Their robustness and precision are critical
to the final quality of the system output. In this section, we
conduct experiments to evaluate the performance of these
methods.

For vanishing point detection, Table 2 shows the per-
formance comparison between our neural network-based
method and the J-Linkage clustering algorithm [27, 26] with
the LSD line detector [5] on the synthetic dataset. We find
that our method is more robust in term of the percentage of
failures and average error, while the traditional line cluster
algorithm is more accurate when it does not fail. This is
because LSD/J-linkage applies a stronger geometric prior,
while the neural network learns the concept from the data.
We choose our method for its simplicity and robustness, as
the focus of this project is more on the 3D wireframe repre-
sentation side, but we believe the performance can be further
improved by engineering a hybrid algorithm or designing a
better network structure.

We also compare the error of the junction depth before
and after depth refinement in term of SILog. We find that on
65% of the testing cases, the error is smaller after the refine-
ment. This shows that the geometric constraints from van-
ishing points does help improve the accuracy of the junction
depth in general. On the other hand, the depth refinement
may not be as effective when the vanishing points are not
precise enough, or the scene is too complex so that there are
many erroneous lines in the wireframe. Some failure cases
can be found in the supplementary material.

4.6. 3D Wireframe Reconstruction Results
We test our 3D wireframe reconstruction method on both

the synthetic dataset and the real images. Examples illustrat-
ing the visual quality of the final reconstruction are shown
in Figures 5 and 6. A video demonstration can be find in
https://youtu.be/l3sUtddPJPY. We cannot show the ground
truth 3D wireframes for the real landmark dataset due to
its incomplete depth maps and lack of ground truth camera
calibrations.

5. Future Work
We have shown the feasibility of learning and detecting

high-level geometric features such as a wireframe of lines
and junctions for the recovery of compact 3D geometry of an

https://youtu.be/l3sUtddPJPY

Ground truth Inferred Ground truth 3D Inferred 3D Ground truth 3D Inferred 3D
Figure 5: Test results on the synthetic SceneCity image dataset. Left group: comparison between the ground truth (column 1) and our
predictions (column 2). Middle (columns 3-4) and right groups (columns 5-6): novel views of the ground truths and our reconstructions to
demonstrate the 3D representation of the scene. The color of the wireframes visualizes depth.

Ground truth Inferred Novel views Ground truth Inferred Novel views
Figure 6: Test results on real images from MegaDepth.

urban scene, even from a single view. To further improve the
performance of our system and apply to diverse real-world
scenes (both indoors and outdoors), we need new datasets
with high-quality images and high-level 3D models of such
scenes. We also plan to extend our wireframe representa-
tions to accommodate curves, surfaces, and more complex
geometric primitives, and generalize the 3D reconstruction
methods to handle scenes that are not entirely Manhattan.

References
[1] S. T. Barnard. Interpreting perspective images. Artificial

Intelligence, 21(4):435–462, Nov. 1983. 4
[2] M. Bertamini, M. Helmy, and D. Bates. The visual system

prioritizes locations near corners of surfaces (not just loca-
tions near a corner). Attention, Perception, & Psychophysics,
75(8):1748–1760, Nov 2013. 1

[3] J. M. Coughlan and A. L. Yuille. Manhattan world: Compass
direction from a single image by bayesian inference. In ICCV,
1999. 2

[4] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network. In
NIPS, 2014. 4, 6, 7

[5] J. Engel, T. Schöps, and D. Cremers. LSD-SLAM: Large-
scale direct monocular slam. In ECCV. 2014. 2, 7

[6] S. M. A. Eslami, D. Jimenez Rezende, F. Besse, F. Vi-
ola, A. S. Morcos, M. Garnelo, A. Ruderman, A. A. Rusu,
I. Danihelka, K. Gregor, D. P. Reichert, L. Buesing, T. We-
ber, O. Vinyals, D. Rosenbaum, N. Rabinowitz, H. King,
C. Hillier, M. Botvinick, D. Wierstra, K. Kavukcuoglu, and
D. Hassabis. Neural scene representation and rendering. Sci-
ence, 2018. 2

[7] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and
A. Zisserman. The pascal visual object classes (voc) chal-
lenge. International journal of computer vision, 88(2):303–
338, 2010. 6

[8] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski.
Manhattan-world stereo. In CVPR, 2009. 2

[9] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The KITTI dataset. The International Journal of
Robotics Research, 2013. 6

[10] T. Groueix, M. Fisher, V. G. Kim, B. Russell, and M. Aubry.
AtlasNet: A papier-mâché approach to learning 3D surface
generation. In CVPR, 2018. 2

[11] M. Hofer, M. Maurer, and H. Bischof. Efficient 3D scene
abstraction using line segments. Computer Vision and Image
Understanding, Apr. 2017. 2

[12] J. Huang, A. Dai, L. Guibas, and M. Niessner. 3Dlite: To-
wards commodity 3D scanning for content creation. ACM
Trans. Graph., 2017. 1

[13] K. Huang, Y. Wang, Z. Zhou, T. Ding, S. Gao, and Y. Ma.
Learning to parse wireframes in images of man-made envi-
ronments. In CVPR, 2018. 2, 5, 6, 7, 11

[14] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison,
et al. KinectFusion: real-time 3D reconstruction and inter-
action using a moving depth camera. In Proceedings of the

24th annual ACM symposium on User interface software and
technology, pages 559–568. ACM, 2011. 1

[15] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface
reconstruction. In Proceedings of the fourth Eurographics
symposium on Geometry processing, volume 7, 2006. 1

[16] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014. 6

[17] Z. Li and N. Snavely. MegaDepth: Learning single-view
depth prediction from internet photos. In Computer Vision
and Pattern Recognition (CVPR), 2018. 5, 6, 7

[18] Z. Li and N. Snavely. MegaDepth: Learning single-view
depth prediction from internet photos. In CVPR, 2018. 5

[19] C. Liu, J. Yang, D. Ceylan, E. Yumer, and Y. Furukawa.
PlaneNet: Piece-wise planar reconstruction from a single
RGB image. In CVPR, 2018. 2

[20] W. E. Lorensen and H. E. Cline. Marching cubes: A high
resolution 3D surface construction algorithm. In ACM sig-
graph computer graphics, volume 21, pages 163–169. ACM,
1987. 1

[21] Y.Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An Invitation to
3D Vision: From Images to Geometric Models. SpringerVer-
lag, 2003. 5

[22] R. Mur-Artal, J. Montiel, and J. D. Tardós. ORB-SLAM:
A versatile and accurate monocular SLAM system. IEEE
Transactions on Robotics, 2015. 2

[23] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks
for human pose estimation. In ECCV, 2016. 3, 6, 11

[24] S. Ramalingam and M. Brand. Lifting 3D manhattan lines
froma single image. InProceedings of the IEEE International
Conference on Computer Vision, pages 497–504, 2013. 2

[25] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and
T. Funkhouser. Semantic scene completion from a single
depth image. In CVPR, 2017. 2

[26] J.-P. Tardif. Non-iterative approach for fast and accurate
vanishing point detection. In 2009 IEEE 12th International
Conference on Computer Vision, pages 1250–1257. IEEE,
2009. 7

[27] R. Toldo and A. Fusiello. Robust multiple structures esti-
mation with J-linkage. In European conference on computer
vision, pages 537–547. Springer, 2008. 7

[28] X. Wang, K. Chen, Z. Huang, C. Yao, and W. Liu. Point
linking network for object detection. arXiv, 2017. 3

[29] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Tor-
ralba, and W. T. Freeman. Single image 3D interpreter net-
work. In European Conference on Computer Vision, pages
365–382. Springer, 2016. 2

[30] F. Yang and Z. Zhou. Recovering 3D planes from a single
image via convolutional neural networks. In ECCV, 2018. 2

[31] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection
and alignment using multitask cascaded convolutional net-
works. IEEE Signal Processing Letters, 23(10):1499–1503,
2016. 2

[32] Y. Zhang, S. Song, E. Yumer, M. Savva, J.-Y. Lee, H. Jin,
and T. Funkhouser. Physically-based rendering for indoor
scene understanding using convolutional neural networks. In
CVPR, 2017. 2

[33] Z. Zhang, A. Ganesh, X. Liang, and Y. Ma. Tilt: Trans-
form invariant low-rank textures. International journal of
computer vision, 99(1):1–24, 2012. 2

[34] A. Zingl. A rasterizing algorithm for drawing curves, 2012.
4

[35] C. Zou, A. Colburn, Q. Shan, and D. Hoiem. LayoutNet:
Reconstructing the 3D room layout from a single RGB image.
In CVPR, 2018. 2

A. Supplementary Materials
A.1. Pseudocode for Line Vectorization

Algorithm 1 gives a more detailed description for line
vectorization. The algorithm takes the C-junction set VC

and T-junction set VT as the input and outputs a vectorized
wireframe (V,E). In the first stage (Lines 2-3), we find the
lines among C-junctions according to the line confidence
function. The procedure Prune-Lines greedily removes the
lines with the lowest confidence that either intersect with
other lines (Line 32) or are too close to other lines in term
of the polar angle (Line 35). In the second stage (Lines
4-25), we add the T-junctions into the wireframe. From
Lines 6-14, we find the T-junctions that are on the existing
wireframe. We first adjust the positions of those T-junctions
by projecting them onto the line (Line 9) and then add them
to the candidate T-junction set V′ (Line 10). Because the
degree of a T-junction is always one, we try to find the
connection with the highest confidence for those candidates
T-junctions (Lines 15-25). We repeat the this process until
V, V′, and E remain the same in the last iteration.

A.2. Line Assignments for Vanishing Points
In Equation (4), we need to find the set of lines Ai ⊆ E

corresponding to the vanishing point i. Mathematically, we
define the objective function

min
A

3∑
i

∑
(u,v)∈Ai

‖(u − V i) × (u − v)‖2 ,

where ‖(·) × (·)‖2 can be understood as the parallelogram
area formed by two vectors. Since each line in this equa-
tion is mutually independent, we can solve this optimization
problem by greedily assigning each line to the best vanishing
point i to minimize the objective function.

A.3. Sampled Failure Cases and Discussions
Figure 7 demonstrates some failure cases in our

SceneCity dataset. We found that our pipeline might not
work well on the scenes in which there are many lines and
junctions that are close to each other. This is because the
resolution of the output heat map is 128 × 128, so any de-
tail whose size is below two or three pixels might get lost
during the vectorization stage. Therefore, one of our future
work is to explore the possibility of using high-resolution

Algorithm 1 Edge Vectorization Algorithm
Require: Candidate C-junction set VC , T-junction set VT .
Require: Hyper-parameters ηc and η◦.
Ensure: Wireframe (V,E).
1: procedure Vectorize(VC , VT)
2: V← VC

3: E← Prune-Lines({(u, v)|u, v ∈ V, c(u, v) > ηc})
4: V′← �
5: while V, V′, or E change in the last iteration do
6: for all w ∈ VT do
7: for all e = (u, v) ∈ E do
8: if w is near e then
9: project w to the line e
10: V′← V′ ∪ {w}
11: break
12: end if
13: end for
14: end for
15: for all u ∈ V′ do
16: v ← argmaxv∈V∪V′ c(u, v)
17: if c(u, v) ≥ ηc then
18: V′← V′\{u}
19: V← V ∪ {u}
20: E← E ∪ {(u, v)}
21: end if
22: end for
23: VT ← VT \(V ∪ V′)
24: end while
25: E← Prune-Lines(E)
26: return (V,E)
27: end procedure
28: procedure Prune-Lines(E)
29: sort E w.r.t confidence values in descending order
30: E′← �
31: for all e ∈ E do
32: if ∃e′ ∈ E′ : e intersects with e′ then
33: continue
34: end if
35: if ∃e′ ∈ E′ : e′ ∩ e , � and ∠(e, e′) < η◦ then
36: continue
37: end if
38: E′← E′ ∪ {e}
39: end for
40: return E′
41: end procedure

input and output images. There are also issues in the 3D
depth refinement stage. When the scene is complex, finding
the assignment Ai for each line can be hard, due to the er-
ror in the junction position and line direction. In addition,
the term contributed by erroneous lines in Equation (4) can
make the depth of some junctions inaccurate. Such problem
might potentially be alleviated by increasing the resolution

Ground truth Inferred 3D Novel views

Figure 7: Failure cases on the SceneCity dataset.

of the input and output images, using a more data-driven
method, designing a better objective function, or employing
a RANSIC approach in those two stages.

A.4. Network Comparison
In this section, we discuss the difference between our

network and the one in [13]. Our network is similar as their
line detection network with the difference in the following
perspectives:

1. In each hourglass module, they use two consecutive
residual modules (RM) at each spatial resolution while
we only use one RM, resulting less parameters in each
hourglass module. Note that our design is the same
as the original hourglass paper [23], which enables us
to use more RM in each hourglass module and reduce
the computational complexity since more computation
is allocated in lower resolution stages. We adopt such
design since we find using two RM gives negligible
gains to the performance compared with only one.

2. We apply the intermediate supervision to the stacked
hourglass network. For each hourglass modules, the
loss term associated with the predicted heat maps is
added to the final loss. [13] does not such intermediate
supervision in their method. We find such intermedi-
ate supervision vital in both our synthetic dataset as
well as their 2D dataset in terms of both accuracy and
robustness.

3. We observe that using 2 stacked hourglass modules
gives a similar performance as the 5 stacked hourglass
modules in [13]. On the other hand, using 2 stacks
consumes less memory, which gives us more design
flexibility. For example, we are able to utilize a larger
batch size to make the gradients more stable.

